Kỹ Năng đọc sách

HỆ SỐ GÓC CỦA MỘT ĐƯỜNG THẲNG LÀ Y = AX B

Kiến thức về hệ số góc của đường thẳng là kiến thức rất cơ bản mà các em sẽ được học trong chương trình học bậc THCS. Đây là kiến thức các em cần nắm vững để sau này tiếp tục học các chủ đề liên quan trong chương trình học bậc phổ thông như: phương trình đường thẳng và hệ số góc, hệ số góc của tiếp tuyến, viết phương trình tiếp tuyến khi biết hệ số góc,.. Bài viết dưới đây sẽ cung cấp cho các em kiến thức cơ bản nhất về hệ số góc từ khái niệm, định nghĩa đến cách tính hệ số góc như thế nào ? cuối bài sẽ có thêm phần bài tập vận dụng để các em có thể rèn luyện thêm sau bài học.

KHÁI NIỆM HỆ SỐ GÓC CỦA ĐƯỜNG THẲNG
Định nghĩa 1: Hệ số góc của đường thẳng y=ax+b(a≠0) là hệ số của góc tạo thành (α) khi đường thẳng cắt trục hoành x′Ox tại một điểm và hợp với trục hoành x′Ox tạo thành một góc. Vì a trong phương trình hàm số có liên quan đến góc này nên a được gọi là hệ số góc của đường thẳng y=ax+b.

Đường thẳng  y=ax+b đi qua điểm M(x0;y0)  và có hệ số góc a có phương trình là y=a(x−x0)+y0

Hai đường thẳng song song hoặc trùng nhau sẽ có cùng hệ số góc.

Khi a>0 thì góc tạo thành là góc nhọn, nằm bên trái trục tung Oy, và nếu  a càng lớn thì góc đó càng lớn.

Khi a 0, tan α = a
Khi a < 0, tan (1800 – α) = – a. Ta tìm được số đo của góc 1800 – α rồi suy ra số đo của góc α Các đường thẳng có cùng hệ số a (a là hệ số của x) thì tạo với trục ox các góc bằng nhau.Định nghĩa 2: Đường thẳng không song song với trục tung có hệ số góc (slope) miêu tả độ dốc của đường thẳng và được định nghĩa là tỷ lệ sự thay đổi theo y so với sự thay đổi theo x của hai điểm bất kỳ nằm trên đường thẳng.Như vậy nếu như đường thẳng đi qua hai điểm (x1, y1) và (x2, y2) thì hệ số góc của đường thẳng đó sẽ được tính bằng công thức ( x1 khác x2)CÁCH TÍNH HỆ SỐ GÓC Dạng tổng quát của đường thẳng y: Ax+By+C=0Nếu B≠0 thì ta chuyển đường thẳng y về dạng như sau: y=ax+b ⇔ABx+y+CB=0⇔y=−ABx−CBKhi đó hệ số góc của đường thẳng y là a = −AB.Cách tính góc α tạo bởi đường thẳng  y=ax+b và chiều dương trục OxKhi a>0, ta có:tanTAxˆ=OBOA=|b|∣∣−ba∣∣=|a|=a. Sau đó, sử dụng máy tính bỏ túi/ bảng lượng giác để suy ra số đo của TAxˆ.

Khi a

Back to top button